Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Pharmacol ; 60(2): 264-273, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31465127

RESUMO

Pathologic roles of interleukin (IL)-2, IL-9, and IL-15, have been implicated in multiple T-cell malignancies and autoimmune diseases. BNZ-1 is a selective and simultaneous inhibitor of IL-2, IL-9, and IL-15, which targets the common gamma chain signaling receptor subunit. In this first-in-human study, 18 healthy adults (n = 3/cohort) received an intravenous dose of 0.2, 0.4, 0.8, 1.6, 3.2, or 6.4 mg/kg infused over ≤5 minutes on day 1 and were followed for 30 days for safety and pharmacokinetic/pharmacodynamic sample collection. No dose-limiting toxicities, infusion reactions, or serious or severe treatment-emergent adverse events were observed. Headache was the only treatment-emergent adverse event in >1 subject (n = 3). Peak and total BNZ-1 exposure was generally dose proportional, with a terminal elimination half-life of ∼5 days. Pharmacodynamic effects of BNZ-1 on regulatory T cells (Tregs, IL-2), natural killer (NK) cells (IL-15) and CD8 central memory T cells (Tcm, IL-15) were measured by flow cytometry and used to demonstrate target engagement. For Tregs, 0.2 mg/kg was an inactive dose, while a maximum ∼50% to 60% decrease from baseline was observed on day 4 after doses of 0.4 to 1.6 mg/kg, and higher doses produced an 80% to 93% decrease from baseline on day 15. Similar pharmacodynamic trends were observed for natural killer cells and CD8 Tcm, although decreases in CD8 Tcm were more prolonged. These subpopulations returned to/toward baseline by day 31. T cells (total, CD4, and CD8), B cells, and monocytes were unchanged throughout. These preliminary results suggest that BNZ-1 safely and selectively inhibits IL-2 and IL-15, which results in robust, reversible immunomodulation.


Assuntos
Subunidade gama Comum de Receptores de Interleucina/metabolismo , Interleucina-15/antagonistas & inibidores , Interleucina-2/antagonistas & inibidores , Interleucina-9/antagonistas & inibidores , Peptídeos/efeitos adversos , Peptídeos/farmacocinética , Adulto , Linfócitos B/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Peptídeos/administração & dosagem , Linfócitos T/efeitos dos fármacos
2.
Gastroenterology ; 158(3): 625-637.e13, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622625

RESUMO

BACKGROUND & AIMS: Gamma chain (γc) cytokines (interleukin [IL]2, IL4, IL7, IL9, IL15, and IL21) signal via a common γc receptor. IL2 regulates the immune response, whereas IL21 and IL15 contribute to development of autoimmune disorders, including celiac disease. We investigated whether BNZ-2, a peptide designed to inhibit IL15 and IL21, blocks these cytokines selectively and its effects on intraepithelial cytotoxic T cells. METHODS: We obtained duodenal biopsies from 9 patients with potential celiac disease (positive results from tests for anti-TG2 but no villous atrophy), 30 patients with untreated celiac disease (with villous atrophy), and 5 patients with treated celiac disease (on a gluten-free diet), as well as 43 individuals without celiac disease (controls). We stimulated primary intestinal intraepithelial CD8+ T-cell lines, or CD8+ T cells directly isolated from intestinal biopsies, with γc cytokines in presence or absence of BNZ-2. Cells were analyzed by immunoblots, flow cytometry, or RNA-sequencing analysis for phosphorylation of signaling molecules, gene expression profiles, proliferation, and levels of granzyme B. RESULTS: Duodenal tissues from patients with untreated celiac disease had increased levels of messenger RNAs encoding IL15 receptor subunit alpha (IL15RA) and IL21 compared with tissues from patients with potential celiac disease and controls. Activation of intraepithelial cytotoxic T cells with IL15 or IL21 induced separate signaling pathways; incubation of the cells with IL15 and IL21 cooperatively increased their transcriptional activity, proliferation, and cytolytic properties. BNZ-2 specifically inhibited the effects of IL15 and IL21, but not of other γc cytokines. CONCLUSIONS: We found increased expression of IL15RA and IL21 in duodenal tissues from patients with untreated celiac disease compared with controls. IL15 and IL21 cooperatively activated intestinal intraepithelial cytotoxic T cells. In particular, they increased their transcriptional activity, proliferation, and cytolytic activity. The peptide BNZ-2 blocked these effects, but not those of other γc cytokines, including IL2. BNZ-2 might be used to prevent cytotoxic T-cell-mediated tissue damage in complex immune disorders exhibiting upregulation of IL15 and IL21.


Assuntos
Benzodiazepinas/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/fisiologia , Subunidade gama Comum de Receptores de Interleucina/antagonistas & inibidores , Interleucina-15/farmacologia , Interleucinas/farmacologia , Estudos de Casos e Controles , Doença Celíaca/imunologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Duodeno/patologia , Humanos , Interleucina-15/genética , Interleucinas/genética , Cultura Primária de Células , RNA Mensageiro , Receptores de Interleucina-15/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...